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Abstract

We present a computational study of signal propagation and attenuation of a 200 MHz
dipole antenna in a cave environment. The cave is modeled as a straight and lossy random
rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved
directly in the time domain via a high order vector finite element discretization using the
massively parallel CEM code EMSolve. The simulation is performed for a series of random
meshes in order to generate statistical data for the propagation and attenuation properties
of the cave environment. Results for the power spectral density and phase of the electric
field vector components are presented and discussed.

1 Introduction

The study of electromagnetic wave propagation in caves and tunnels is of great practical interest
to antenna engineers due to the increasing demands for reliable wireless communications systems
in such environments. Current wireless radio frequency (RF) communication systems were not
designed to operate reliably in enclosed environments such as caves and tunnels, and signal quality
is severely compromised due to the rough and lossy surfaces of the cave. Today there is limited
ability to maintain communications in cave-like structures, tunnels or subways, prohibiting the
quick deployment of wireless systems in caves and tunnels. Military or rescue personnel are po-
tentially at risk when in these environments. If the electromagnetic properties of the tunnel could
be characterized (e.g. dissipation, dispersion, fading, etc.), then a more robust communication
system could be designed specifically for operation in such environments, hence full wave EM
simulations of propagation in this type of environment are very useful.

Much theoretical work in this field has been done in order to develop a better understanding of
the RF propagation channel. Dudley recently studied models for propagation in circular tunnels
[1]. He produced expressions for the fields in terms of a Fourier transform over the axial variables,
and presented the numerical results for the field intensity both as a function of axial distance and
as a function of radial distance. However, this work only involved smooth tunnel walls and not the
more realistic situation of rough wall tunnels. In this case, the electromagnetic fields are no longer
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deterministic, but random variables that need to be solved using statistical methods. Recently,
Pao and Kasey have investigated the statistical properties of wave propagation in straight, rough-
walled tunnels [2], [3]. This work assumes a perfect electrical conductor (PEC) boundary at the
rough wall / air interface. A more realistic model needs to take into account the lossy nature of
the rough walls and the cave material (typically granite or some sort of earth like material with
electrical conductivities on the order of 0.1S/m).

In this paper we use a high order finite element discretization to solve the full wave Maxwell
equations directly in the time domain for the case of a dipole antenna source placed at the mouth
of a straight, lossy rough walled tunnel. We chose a time domain simulation in order to efficiently
compute the response over a broad frequency band. The electromagnetic wave equation for the
electric field is discretized over a sequence of randomly generated meshes to determine statistical
properties for the power spectral density (PSD) and phase of the three components of the electric
field. The problem is solved directly in the time domain using a leap-frog method, and results
are converted into the frequency domain via FFT algorithms. We begin with a brief description
of the numerical method employed for this problem (as implemented in the EMSolve code [4])
followed by a presentation and description of the numerical results.

2 Numerical Formulation

We begin with the second order time dependent wave equation for the electric field in a 3 dimen-
sional domain €2
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where 02 is the two dimensional boundary of the domain, n is the outwardly directed unit normal
of this boundary and J is a free current density source that can be added to drive the problem. The
value Ey. represents an arbitrary boundary condition imposed on the electric field intensity while
€, p and o denote the dielectric permittivity, magnetic permeability and electrical conductivity of
the materials contained in the domain 2 respectively.

Applying an arbitrary order Galerkin finite element discretization to the wave equation (the
details of which can be found in [5], [6]) yields the following semi-discrete system of ordinary
differential equations
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where M, M, are finite element mass matrices, S, is a finite element stiffness matrix and e, j are
discrete arrays of finite element degrees of freedom. Applying a backward difference approximation
for the first order time derivative in (2) and a central difference approximation for the second order

time derivative yields the following fully discrete linear system of equations
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where At is the discrete time step, the integer n denotes the current time step and the time
derivative of the free current source has been directly incorporated into the new source term j'.

For the results shown in section 3 below we employ second-order interpolatory H (curl) basis
functions along with custom quadrature rules that yield a diagonal “mass” matrix M,. The details
of this discretization are presented in [7] [8]. This method is much more accurate than standard
FDTD, the numerical dispersion for this method is O(h?*) rather than O(h?) as it is for FDTD.
Compared to higher-order FDTD schemes, this method is better at modeling the jump discontuity
of fields across the air-earth interface.

3 Computational Results

For our calculations we choose a tunnel with an average diameter of 2m and a total length
of 75m. The random rough surface is generated as follows. Step 1: Generate a cylindrical
surface of appropriate radius and length, Step 2: Add a random perturbation of specified standard
deviation to the surface, Step 3: Smooth the random surface (low pass filter) to introduce a
surface correlation of a given length, Step 4: Generate a 3D Cartesian mesh, where the electrical
conductivity of each element depends upon whether the element is inside the random surface (air)
or outside the random surface (earth). For mesh elements that straddle the random surface, a
volume-fraction is used to determine the conductivity. To model the dielectric and conducting
properties of earth, we choose a uniformly varying electrical conductivity of 0.1-0.02S/m and a
dielectric permittivity of 5 times the free space permittivity € (a typical value for granite). Each
computational mesh consists of 583,200 hexahedral elements, an example of which is shown in
Figure 1. Note that the portion of the mesh representing the air has been removed to illustrate
the random rough surface.

A z-oriented dipole antenna is placed at one end of the tunnel, modeled by applying a time
dependent current source (represented by the term j') to one of the mesh edges , while a simple
absorbing boundary condition is placed at the other. A PEC boundary condition is applied to
the outer most walls of the cave to fully define the problem. The temporal dependence of the
current source is a Gaussian pulsed sine wave centered at 200 MHz with a 20% bandwidth. The
simulation is performed using high order p = 2 basis functions to mitigate the effects of numerical
dispersion. The various simulation parameters are summarized in Table 1

Nine random caves were simulated. A time history was recorded at each z, for all time steps.
This data was used to find the spectrum at every spatial step. For each simulation the mean and
variance of the PSD and phase were extracted over the bandwidth of the signal. The run was
normalized by dividing by the total PSD magnitude at the first x-data point, thereby removing
the characteristics of the input signal, but preserving the relative magnitudes vs. polarization.
The last 100 spatial samples were removed to avoid reflections from the end of the cave. The
results for this are shown in Figure 3. For these plots, The z-axis is frequency, and the y-axis is
distance into the cave. No significant variation was found in the result across the spectrum. In
Figure 4 we plot the mean of the PSD for E,, E,, and E, at 200 MHz. It is compared to the
corresponding PSD in a cave with no roughness. Note that for the primary transmitted field (£,),
the scattered field fills in nulls which are created by destructive interference in the smooth case.
However, due to cross-polarization scattering, the PSD of E, is in general lower. Also note that in



Figure 2: Example of computed electric field magnitude at the final time step.

the £, and E), lines, the cross-polarization scattering significantly increases their energy further
into the cave, as would be expected.

4 Conclusions

We have applied the high order time domain vector finite element methods described in [5], [6]
and [8] to the case of RF electric field propagation in a lossy rough wall tunnel. This particular
calculation has proved difficult to solve using direct theoretical analysis. We have presented
statistical data for the power spectral density and phase of a 200 MHz dipole antenna source and
have compared our data in a rough walled cave to one with a smooth surface. Future research will
involve the use of a planar ring shaped antenna for direct comparison to the work of [1]. Once the
full wave simulation technique is verified against theory, it will allow modeling of cave structures
such as bends and forks that are too complex for theoretical techniques.



Avg. Cave Radius 2 m (1.333 \)
Cave Length 75 m (50 A)
Element Size (Ax) 0.167 m (0.111 )
Surface Roughness Variance 0.3 m (0.2 ), Gauss. dist. centered at 0
Conductivity Variation Uniform, 0.1 — 0.02 S/m
Signal Type Modulated Gaussian pulse, z-oriented dipole
Center Frequency 200 MHz
Bandwidth 20%
Gaussian Width 4.67e-9 s
Gaussian Delay 2.50e-8 s
No. of Trials 9
No. Unknowns per Trial ~ 14 million
No. Parallel CPU’s per Trial 192

Table 1: Summary of computational statistics for cave simulations.
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Figure 3: Mean and variance of computed power spectral density (left) and phase (right) for the electric
field vector, normalized with respect to the initial field strength.
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Figure 4: Comparison of power spectral density as a function of propagation distance for a smooth
walled cave and a rough walled cave.



